Postanthesis green area duration in a semidwarf and a standard-height wheat cultivar as affected by sink strength

Author:

Slafer GA,Savin R

Abstract

Postanthesis green area duration (GAD) has been associated frequently with yield. The senescence pattern of green organs is a major component of GAD. It has been proposed that delayed or accelerated senescence is strongly controlled by environmental conditions and the level of source or sink limitation on grain growth. In particular, it has been generally reported that the removal of reproductive structures delays the senescence process. However, results reporting this effect in wheat are not conclusive. A field experiment was conducted at the experimental station of The University of Melbourne comprising a factorial combination of a semidwarf and a standard-height wheat, and two levels of sink strength. At anthesis, 20 main shoots were tagged and detillered. Ten days after anthesis all the spikelets from one side of 10 tagged ears were removed by hand. The experiment was performed under natural, and 3 h-extended photoperiods from seedling emergence to heading. The photoperiod treatments induced differing grain filling environments and differing plant characteristics at onset of grain filling. Green area senescence was similar for both sink size treatments at any combination of cultivar and grain filling condition, indicating that the dynamics of plant senescence was insensitive to a severe reduction in number of grains per spike. Therefore, GAD was not significantly affected by the reduction in sink strength. The number of grains per spike were reduced to ca. 50% due to trimming. Therefore, source-sink ratio was doubled, but no significant changes in individual grain weight were found. There was no relationship between GAD and individual grain weight, confirming that grain growth in field-grown wheat is not limited by the strength of the source. Alternatively, our results confirmed that field-grown wheat is sink-limited during grain filling and that the likely accumulation of soluble carbohydrates in leaves does not affect the onset or rate of senescence.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3