Author:
Levy Jacqueline,Zhang Hao,Davison William,Groben Rene
Abstract
Environmental context
Interaction of metals with dissolved organic matter is one of the key processes defining metal bioavailability in water. The technique of diffusive gradients in thin films was used to investigate the kinetics of the interaction between metals and dissolved organic matter released by algae. For most metals the rate at which they were released from the organic matter was fast, but release of iron was kinetically limited.
AbstractThe interaction of metals with organic matter is one of the key processes determining metal speciation and bioavailability in water. Fulvic acid tends to dominate dissolved organic carbon (DOC) in freshwaters, but organic carbon produced in situ, e.g. exudates released by algae and bacteria, is also significant. The technique of diffusive gradients in thin films (DGT) was used to investigate the lability of metal–exudate complexes using a kinetic signature approach. Exudates were harvested from three cultured freshwater alga (Chlorella vulgaris, Cryptomonas pyrenoidifera, Anabaena flos-aquae) and the filtered media supplemented with trace metals. DGT-labile metal concentrations and kinetic signatures were determined (24-h deployment). The relationship between Fe and DOC was a defining feature of the kinetic signatures. Iron was the most kinetically limited metal followed by Al and Cu, whereas Co, Ni and Pb were effectively completely labile. Exudates from Chlorella vulgaris produced the most DOC and the most marked kinetic limitation.
Subject
Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献