Oncostatin M and leukaemia inhibitory factor trigger signal transducer and activator of transcription 3 and extracellular signal-regulated kinase 1/2 pathways but result in heterogeneous cellular responses in trophoblast cells

Author:

Chaiwangyen Wittaya,Ospina-Prieto Stephanie,Morales-Prieto Diana M.,Pereira de Sousa Francisco Lazaro,Pastuschek Jana,Fitzgerald Justine S.,Schleussner Ekkehard,Markert Udo R.

Abstract

Leukaemia inhibitory factor (LIF) and oncostatin M (OSM) are pleiotropic cytokines present at the implantation site that are important for the normal development of human pregnancy. These cytokines share the cell membrane receptor subunit gp130, resulting in similar functions. The aim of this study was to compare the response to LIF and OSM in several trophoblast models with particular regard to intracellular mechanisms and invasion. Four trophoblast cell lines with different characteristics were used: HTR-8/SVneo, JEG-3, ACH-3P and AC1-M59 cells. Cells were incubated with LIF, OSM (both at 10 ng mL–1) and the signal transducer and activator of transcription (STAT) 3 inhibitor S3I-201 (200 µM). Expression and phosphorylation of STAT3 (tyr705) and extracellular regulated kinase (ERK) 1/2 (thr202/204) and the STAT3 DNA-binding capacity were analysed by Western blotting and DNA-binding assays, respectively. Cell viability and invasiveness were assessed by the methylthiazole tetrazolium salt (MTS) and Matrigel assays. Enzymatic activity of matrix metalloproteinase (MMP)-2 and MMP-9 was investigated by zymography. OSM and LIF triggered phosphorylation of STAT3 and ERK1/2, followed by a significant increase in STAT3 DNA-binding activity in all tested cell lines. Stimulation with LIF but not OSM significantly enhanced invasion of ACH-3P and JEG-3 cells, but not HTR-8/SVneo or AC1-M59 cells. Similarly, STAT3 inhibition significantly decreased the invasiveness of only ACH-3P and JEG-3 cells concomitant with decreases in secreted MMP-2 and MMP-9. OSM shares with LIF the capacity to activate ERK1/2 and STAT3 pathways in all cell lines tested, but their resulting effects are dependent on cell type. This suggests that LIF and OSM may partially substitute for each other in case of deficiencies or therapeutic interventions.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3