Micellar oxidative transformation of ciprofloxacin: a kinetic investigation

Author:

Shrivastava Alpa,Singh Ajaya Kumar,Sachdev Neerja,Shrivastava Dilip R.,Prasad Surendra

Abstract

Environmental contextPollution of the aquatic environment by drugs results not only during their manufacture, but also from the excretion of drug residues and the discharge of expired drugs by households and hospitals. The transformation of ciprofloxacin, one of the leading antibiotic drugs, in the presence of surfactants has been investigated. The results provide a better understanding of how ciprofloxacin degrades in aquatic environments by considering the effect of omnipresent surfactants. AbstractThe kinetics of the oxidative transformation, i.e. oxidative degradation, of ciprofloxacin (CIP) by chloramine-T (CAT) in cationic and anionic micelle media during the water chlorination process was studied spectrophotometrically at 275nm and 298K. The influence of added salts (1–10×10–4moldm–3) and solvent polarity of the medium on the reaction was studied. The orders with respect to substrate CIP and oxidant CAT were found to be first order in each. The variation of acid concentrations showed opposite effects in cationic and anionic micellar aggregates. Liquid chromatography–electrospray ionisation mass spectrometry was used to identify degradation products of CIP, which confirmed the full dealkylation of the piperazine ring in CIP as the major product. The piperazine moiety of CIP is the principal active site for the CAT during oxidation. Activation parameters for the CIP degradation in cationic and anionic micelles were evaluated by studying the reaction at different temperatures, which lent further support to the proposed degradation mechanism for CIP. The rate constants were evaluated to confirm the micellar effect from incorporating sodium dodecyl sulfate and cetyltrimethylammonium bromide in the reaction mixture and the intrinsic reactivity constants were determined in the aqueous as well as in the micellar pseudo-phases as 4.85 and 0.0083.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3