Plant density and thinning regime effect on maize (Zea mays) grain and fodder yield

Author:

Njoka E. M.,Muraya M. M.,Okumu M.

Abstract

Maize (Zea mays L.) plant density is an important management practice for successful grain and forage production. The objective of this study was to determine the most suitable maize seeding and time of thinning maize as fodder in grain maize crops. Previously the focus in this area has been on grain and silage production, and consequently information on the production of fodder in grain maize crops is limited. This study therefore aims to investigate the growth of high density maize for fodder production through thinning and subsequent grain yield. A plant density experiment in randomised complete block design was carried out at Egerton University, Njoro, using a Kenyan hybrid (H511) where 4 densities (44 444, 88 888, 177 777 and 355 555 plants/ha) and 4 thinning regimes (V4, V6, V10 and VT phenological stages) were used. The densities vary through number of seed per hill (i.e. 1, 2, 4 and 8 seeds/hill, not row or plant spacing) and spacing of 30 cm between the hills within the row and 75 cm between the rows was used. Maize plants were thinned following the appropriate thinning regime to leave 1 plant per hill, giving a plant density of 44 444 plants/ha in all treatments after thinning. Their biomass was then determined. The single plants per hill left, as a normal farmers practice, were used to determine grain yield at harvest. Plant density of 355 552 plants/ha, with a treatment structure of 4 seeds/hill and thinned at the VT phenological stage gave the highest thinning biomass per hectare, while 44 444 plants/ha, with a treatment structure of 1 seed/hill and no thinning, gave the highest grain yield. The thinning regime of the V10 phenological stage and 2 seeds/hill thinned at the VT phenological stage gave appreciable amount of fodder and grain yields. This study has shown that with particular seeding densities and thinning regimes, production of both fodder and grain is possible.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3