Carbon and N turnover in moist sandy soil following short exposure to a range of high soil temperature regimes

Author:

Luxhøi J.,Fillery I. R. P.,Recous S.,Jensen L. S.

Abstract

Laboratory experiments were undertaken to examine the effects of high soil temperatures on N biotransformations in sandy soils. Soils were incubated at 30°, 40°, 50°, and 60°C for 2 days, before all treatments were kept at 30°C for up to 41 days. Another laboratory experiment evaluated the effect of different cycles of exposure to 50° and 30°C, including frequency and duration of exposure to 50°C, to assess the sensitivity of N biotransformations to temporary increases in temperature in the high range. CO2-C production, soil microbial biomass-C, gross N mineralisation, gross N immobilisation, and potential gross nitrification were measured. Gross N mineralisation and CO2-C production increased with temperature (in the range 30°−50°C) and exhibited a Q10-relationship close to 2. Between 50° and 60°C, Q10 was closer to 2.8. The increase in gross N mineralisation and CO2-C production after exposure to 50° and 60°C is attributed to the decomposition of dead microbial biomass by the viable microbial population but this flush in activity was short-lived. Immobilisation rate was always low and remained unaffected by the temperature regime, probably because the growth of the microbial biomass was inhibited at the higher temperatures. This imbalance between gross N mineralisation and immobilisation resulted in rapid increases in mineral N in soil. Two 6-h cycles of 50°C interspersed with 30°C were equally as effective as a single 48-h exposure at stimulating CO2 production. Evidence of uncoupling CO2 production and gross N mineralisation was observed in one study where soil was incubated at 50°C, but this response was not universal. The nitrification process was totally suppressed by exposure to temperature higher than 40°C, probably due to thermal denaturation of enzymes. The relevance of findings to field conditions is discussed.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3