Does carbon storage confer waterlogging tolerance? Evidence from four evergreen species of a temperate rainforest

Author:

Delgado M.,Zúñiga-Feest A.,Piper F. I.

Abstract

Deep shade and waterlogging are two common stressors affecting seedling performance in the understorey of evergreen rainforests. It has been hypothesised that high levels of carbon storage confer shade- and waterlogging tolerances by preventing carbon limitation under such stresses. Whether the tolerance to both stresses is positively or negatively related remains unclear. To explore the role of carbon storage in the relationships of waterlogging and shade tolerance, we investigated the responses to waterlogging and the levels of carbon storage in two species pairs with contrasting shade tolerance: Embothrium coccineum J.R.Forst.&G.Forst. and Gevuina avellana Mol. (Proteaceae) and Nothofagus dombeyi (Mirb.) Oerst. and Nothofagus nitida (Phil.) Krasser (Nothofagaceae). We subjected seedlings to waterlogging or control conditions for 30 days and evaluated survival, relative growth rate (RGR), biomass distribution, leaf chlorophyll fluorescence (Fv/Fm), and concentrations of total soluble sugars, starch and non-structural carbohydrates in different plant tissues. Waterlogging reduced survival, Fv/Fm and RGR in all species; however, the magnitude of reduction of Fv/Fm and RGR was significantly higher in the shade-intolerant species than in their shade-tolerant counterparts. In general, shade-intolerant species had significantly higher non-structural carbohydrate concentrations in waterlogging than in control conditions. By contrast, shade-tolerant species had similar non-structural carbohydrate concentrations under both conditions. Our results indicate that relatively shade-tolerant species performed better under waterlogging. A reduction in non-structural carbohydrates under waterlogging was not observed in any of studied species; rather, shade-intolerant species exhibited non-structural carbohydrate accumulation suggesting that carbon storage does not confer waterlogging tolerance in these species.

Publisher

CSIRO Publishing

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3