Seminal plasma proteins inhibit in vitro- and cooling-induced capacitation in boar spermatozoa

Author:

Vadnais Melissa L.,Roberts Kenneth P.

Abstract

Dilute boar seminal plasma (SP) has been shown to inhibit in vitro capacitation and cooling-induced capacitation-like changes in boar spermatozoa, as assessed by the ability of the spermatozoa to undergo an ionophore-induced acrosome reaction. We hypothesised that the protein component of SP is responsible for this effect. To test this hypothesis, varying concentrations of total SP protein or SP proteins fractionated by heparin binding were assayed for their ability to inhibit in vitro capacitation, as well as cooling- and cryopreservation-induced capacitation-like changes. In vitro capacitation and cooling-induced capacitation-like changes were prevented by 10% whole SP, as well as by total proteins extracted from SP at concentrations greater than 500 μg mL−1. No amount of SP protein was able to prevent cryopreservation-induced capacitation-like changes. Total SP proteins were fractionated based on their heparin-binding properties and the heparin-binding fraction was shown to possess capacitation inhibitory activity at concentrations as low as 250 µg mL−1. The proteins in the heparin-binding fraction were subjected to mass spectrometry and identified. The predominant proteins were three members of the spermadhesin families, namely AQN-3, AQN-1 and AWN, and SP protein pB1. We conclude that one or more of these heparin-binding SP proteins is able to inhibit in vitro capacitation and cooling-induced capacitation-like changes, but not cryopreservation-induced capacitation-like changes, in boar spermatozoa.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3