Reaction of Acyclic Hydrocarbons Towards t-Butoxy Radicals. A Study of Hydrogen Atom Abstraction by Using the Radical Trapping Technique

Author:

Dokolas Peter,Loer Steven M.,Solomon David H.

Abstract

The reaction of 3-methylpentane and 2,4-dimethylpentane toward t-butoxy radicals has been investigated, in neat and benzene solutions, by using the radical trapping technique. Abstraction occurs principally from the tertiary and secondary C-H reaction sites of 3-methylpentane and the tertiary position of 2,4-dimethylpentane. The tertiary and in particular secondary C-H reaction sites of 2,4-dimethylpentane are shown to be considerably less susceptible towards t-butoxy radical facilitated abstraction compared with the equivalent reaction sites of 3-methylpentane. As a result, the latter is three times as reactive as 2,4-dimethylpentane as a neat hydrocarbon solution and seven times as reactive in a diluted mixture of benzene. Diferences in selectivity and rate of hydrogen abstraction, between the substrates, are interpreted in terms of non-bonding interactions retarding t-butoxy radicals from approaching sterically demanding C-H reaction sites. The selectivity from 3-methylpentane is solvent-insensitive whereas abstraction from 2,4-dimethylpentane is modified in benzene. Further, the rate of hydrogen abstraction, from either substrate, to t-butoxy radical β-scission is considerably smaller in benzene. Both observations are interpreted in terms of t-butoxy radical solvation by the aromatic solvent.

Publisher

CSIRO Publishing

Subject

General Chemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3