Aerial surveys of multiple species: critical assumptions and sources of bias in distance and mark - recapture estimators

Author:

Melville Gavin J.,Tracey John P.,Fleming Peter J. S.,Lukins Brian S.

Abstract

Recent developments in the application of line-transect models to aerial surveys have used double-observer sampling to account for undercounting on the transect line, a crucial step in obtaining correct population estimates. This method is commonly called the mark–recapture line-transect sampling method and estimates the detection probability at zero distance to correct line-transect estimates of abundance. An alternative approach, which uses the same methodology during data collection, is to use a range of covariates, including distance from the transect, in a mark–recapture model. This approach overcomes the implicit assumption of uniform distribution of distances in line-transect estimators. In this paper, we use three alternative approaches (a multiple-covariates distance method, a distance method incorporating adjustment for incomplete detection on the transect line using mark–recapture sampling, and a mark–recapture method with distance as a covariate) to estimate the abundance of several medium-sized mammals in semiarid ecosystems. Densities determined with the three estimators varied considerably within species and sites. In some cases distance estimates were larger than mark–recapture estimates and vice versa. Despite large numbers of observations, distance uniformity was not observed for any species at any site, nor for any species where sites were combined. Possible reasons, which include sampling variability, movement in response to the aircraft and failure of the mark–recapture independence assumption, are discussed in detail.

Publisher

CSIRO Publishing

Subject

Management, Monitoring, Policy and Law,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3