Photon flux density dependence of carbon acquisition and demand in relation to shoot growth of kiwifruit (Actinidia deliciosa) vines grown in controlled environments

Author:

Greer Dennis H.

Abstract

Kiwifruit [Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson] vines were grown in four controlled photon flux densities (PFDs) from 250 to 1100 µmol m –2 s –1 for 130 d starting from pre-budbreak to measure relationships between shoot growth and carbon (C) demand and to assess the effect of PFD on these processes. Leaf area, stem length, photosynthesis and respiration rates were measured on the same leaves at regular intervals. From daily C acquisition and accumulation in biomass, the net C balance per cane was determined throughout the experiment. High-PFD-grown vines had 13% more leaf area, 250% more leaf biomass and 30% more stem biomass than low-PFD-grown vines. High-PFD-grown vines also partitioned relatively more biomass to photosynthetic tissue than to supporting stem tissue compared with low-PFD-grown vines. Rates of net photosynthesis were highest on vines grown at 800 µmol m –2 s –1 , but respiration rates were highest in high-PFD-grown vines. Vines grown at 1100 µmol m –2 s –1 had a net gain of 119 g sh –1 and 53 g sh – at 250 µmol m –2 s –1 , of which 46 and 58%, respectively, was used in shoot biomass growth. Net C balance was negative for 30 d after budbreak. Over 130 d, high-PFD-grown vines produced a total surplus of 64 g sh –1 , while low-PFD-grown vines produced 22 g sh –1 . Results demonstrate that irradiance has no effects on developmental processes but has marked effects on vegetative growth rates of kiwifruit vines. Underlining this, the C economy of these shoots is highly and quantitatively dependent on the PFD during growth.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3