Enhanced formation of bromophenols by anthraquinone-2-sulfonate and benzophenone: implications for photochemical production of organobromine compounds by dissolved organic matter in a marine environment

Author:

Liu HuiORCID,Qiu Xiaojun,Zhu Xiaomei,Sun Bing,Zhang Xiaoxing

Abstract

Environmental contextOrganobromine compounds are a potential environmental hazard, but there are many uncertainties about their natural sources. This paper investigated the photochemical generation of bromophenols in the presence of dissolved organic matters (DOMs) and proxies, and demonstrated that DOMs enhance the photobromination reaction. The result indicates that the bromination process induced by sunlit DOMs likely contributes to the natural sources of organobromine compounds in the marine environment. AbstractOrganobromine compounds are substantial environmental hazards owing to their high toxicity on organisms. Here we study the photochemical formation of bromophenols from phenol in bromide aqueous solutions (0.8–80 mM) in the presence of anthraquinone-2-sulfonate (AQ2S) and benzophenone (BP), which were adopted as the proxies of dissolved organic matter (DOM) having quinones and aromatic ketones structures. The formation of bromophenols increased with the increase of the concentrations of AQ2S and BP, and the promotion effect was in the order AQ2S > BP. Bromide and chloride ions were found to promote the formation of bromophenols. Moreover, natural DOM from Suwannee River was found to enhance this photobromination reaction at a low concentration (1 mg L−1). These results demonstrate the generation of reactive halogen species from sunlit DOM, and such a process could account for the abiotic source of organobromine compounds in a marine environment, as terrestrial DOM distributes universally in estuaries and coastal seawater and could diffuse to the open sea.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3