Proteinaceous and humic fluorescent components in chloroform-fumigated soil extracts: implication for microbial biomass estimation

Author:

Rinot Oshri,Rotbart Nativ,Borisover Mikhail,Bar-Tal Asher,Oren AdiORCID

Abstract

Excitation–emission matrix fluorescence spectroscopy coupled with parallel factor analysis was employed for characterisation of chloroform fumigation-extractable soil organic matter, commonly used for soil microbial biomass estimation. This allowed, for the first time, to discriminate between humic-like (i.e. noncellular) and microbial protein-like, fumigation-extractable components, challenging the presumption that only microbial constituents contribute to the fumigation flush of C serving as a proxy measure for soil microbial C. A Vertisol was assayed under increasing K2SO4 extractant molarity (0–0.5 M), which allowed increasing organic matter extractability levels and the association of these increases with relative contributions from microbial versus humic sources. Expectedly, protein-like fluorescence was found negligible in the nonfumigated soil extracts while comprising the bulk of fluorescence of the material becoming K2SO4-extractable due to fumigation. Nevertheless, fumigation also led to an increase in extractable concentrations of humic-like components, showing that not only microbial constituents were fumigation-extractable. Humic-like fluorescence in the fumigation flush generally increased with decreasing K2SO4 molarity, being minimal at 0.25 M K2SO4. Considering also the preference for maximal flush of extractable soil organic matter, indicative of maximal fumigation efficiency, the use of 0.25 M K2SO4 seems preferable for extraction of microbial biomass with minimal interference from humic substances, for the investigated Vertisol. The presented working framework for assessment and alleviation of interference from humic substances in microbial biomass estimation is recommended to be applied specifically to any soil type before routine monitoring.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chemical Reactivity;Soil Health Series;2021-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3