A review of logistic regression models used to predict post-fire tree mortality of western North American conifers

Author:

Woolley Travis,Shaw David C.,Ganio Lisa M.,Fitzgerald Stephen

Abstract

Logistic regression models used to predict tree mortality are critical to post-fire management, planning prescribed burns and understanding disturbance ecology. We review literature concerning post-fire mortality prediction using logistic regression models for coniferous tree species in the western USA. We include synthesis and review of: methods to develop, evaluate and interpret logistic regression models; explanatory variables in logistic regression models; factors influencing scope of inference and model limitations; model validation; and management applications. Logistic regression is currently the most widely used and available technique for predicting post-fire tree mortality. Over 100 logistic regression models have been developed to predict post-fire tree mortality for 19 coniferous species following wild and prescribed fires. The most widely used explanatory variables in post-fire tree mortality logistic regression models have been measurements of crown (e.g. crown scorch) and stem (e.g. bole char) injury. Prediction of post-fire tree mortality improves when crown and stem variables are used collectively. Logistic regression models that predict post-fire tree mortality are the basis of simple field tools and contribute to larger fire-effects models. Future post-fire tree mortality prediction models should include consistent definition of model variables, model validation and direct incorporation of physiological responses that link to process modelling efforts.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3