Phylogeographic structuring of the amphidromous shrimp Atya scabra (Crustacea, Decapoda, Atyidae) unveiled by range-wide mitochondrial DNA sampling

Author:

Oliveira Caio M. C. A.,Terossi MarianaORCID,Mantelatto Fernando L.ORCID

Abstract

Species with biological traits favourable to long-distance marine larval dispersal might show a phylogeographic structuring over broad regions, even when they are genetically connected within smaller scales. Here, we evaluated this hypothesis by using the widespread amphidromous shrimp Atya scabra, predicting a genetic discontinuity across biogeographical barriers throughout the Western Gulf of Mexico (WGM), Caribbean Sea (CS), south-western Atlantic (SWA) and eastern Atlantic (EA). Using cytochrome oxidase subunit 1 (COI) and 16S ribosomal unit (16S) gene fragments, we did a phylogeographic assessment and genetic characterisation with Bayesian clustering, AMOVA, haplotype networks and demographic analyses. As predicted, three discrete genetic groups, corresponding to the regions WGM, CS and EA, were uncovered by COI, as well an unpredicted SWA+CS group. The 16S fragment detected a low genetic variation, probably owing to a recent lineage differentiation, which was estimated by the COI molecular clock. We evaluated the role of the biological traits of A. scabra, as well as the consequences of Panama Isthmus closure and Pleistocene glaciation cycles in the lineage isolation of WGM and EA, as well as the genetic connectivity shown within regions and between CS and SWA. Our results highlighted that amphidromous species genetically connected over large scales should be genetically characterised in their wide distribution to provide more comprehensive systematics and to assist decision-making in biological conservation.

Publisher

CSIRO Publishing

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3