Author:
Bullen R. D.,McKenzie N. L.
Abstract
In this paper we examine 12 species of Western Australian bat for anatomical and morphometric attributes related to wing lift and drag characteristics. We present values for bat wing camber (typically 6.5–9%) and its location, measurements of wing planform and tip shape (typically elliptical but with two different tip designs), dimensions of wing leading-edge flaps (typically 8–10.5% of hand wing chord but with some species having much larger flaps up to 18%) and then discuss several features related to airflow separation control. All species assessed had thin, low-camber airfoil sections, an optimisation appropriate to the range of Reynolds Numbers in which bats fly. Wing relative cleanliness was consistent with, and functionally appropriate to, species foraging strategy. The interceptors had the point of maximum camber well forward and no trailing edge wing fences, optimisations for minimum drag generation. The air-superiority bats had leading-edge fences optimised for maximum lift generation while maintaining low drag. Surface bats were characterised by their low-aspect-ratio wingtips and the absence of optimisations for either low section drag or high lift. The frugivore and the carnivore appear to be discrete optimisations while the emballinurid had a long and broad leading edge flap in combination with a high-aspect-ratio tip. We propose a range of lift and drag coefficient values for use in models of metabolic power output.
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献