Role of Akt and mammalian target of rapamycin signalling in insulin-like growth factor 1-mediated cell proliferation in porcine Sertoli cells

Author:

Johnson ChinjuORCID,Kastelic John,Thundathil Jacob

Abstract

The critical role of insulin-like growth factor (IGF) 1 in promoting Sertoli cell proliferation invivo and invitro has been established, but its downstream signalling mechanisms remain unknown. In addition to mitogenic effects, a role for IGF1 in mediating cholesterol biosynthesis within testes has been implied. The aims of this study were to investigate the roles of: (1) phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (mTOR) signalling in IGF1-mediated Sertoli cell proliferation; and (2) IGF1 in mediating cholesterol biosynthesis in Sertoli cells. Primary cultures of Sertoli cells were prepared from 1-week-old porcine testes. On Day 3 of culture, Sertoli cells were treated with 300ng mL−1 IGF1, alone or in combination with inhibitors of IGF1 receptor (2μM picropodophyllotoxin), Akt (1μM wortmannin) or mTOR (200nM rapamycin). Cells were cultured for 30min and phosphorylation levels of Akt, mTOR and p70 ribosomal protein S6 kinase (p70S6K) were determined by immunoblotting. Cell proliferation and quantitative polymerase chain reaction assays were conducted using cells cultured for 24h. IGF1 increased phosphorylation of Akt, mTOR and p70S6K and cell proliferation, and these effects were inhibited by inhibitors of IGF1R, Akt and mTOR. Furthermore, IGF1 upregulated the expression of cholesterol biosynthetic genes (3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS1) and cytochrome P450, family 5, subfamily A, polypeptide 1 (CYP5A1)), but not sterol regulatory element-binding transcription factor 1 (SREBF1). Increased phosphorylation of p70S6K, a major downstream target of mTOR, and upregulated expression of genes involved in cholesterol biosynthesis are indicative of the key role played by IGF1 in regulating the synthesis of cholesterol, the precursor for steroid hormones.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3