Ensemble pedotransfer functions to derive hydraulic properties for New Zealand soils

Author:

Cichota Rogerio,Vogeler Iris,Snow Val O.,Webb Trevor H.

Abstract

Modelling water and solute transport through soil requires the characterisation of the soil hydraulic functions; however, determining these functions based on measurements is time-consuming and costly. Pedotransfer functions (PTFs), which make use of easily measurable soil properties to predict the hydraulic functions, have been proposed as an alternative to measurements. The better known and more widely used PTFs were developed in the USA or Europe, where large datasets exist. No specific PTFs have been published for New Zealand soils. To address this gap, we evaluated a range of published PTFs against an available dataset comprising a range of different soils from New Zealand and selected the best PTFs to construct an ensemble PTF (ePTF). Assessment (and adjustment when required) of published PTFs was done by comparing measurements and estimates of soil water content and the hydraulic conductivity at selected matric suction values. For each point, the best two or three PTFs were chosen to compose the ePTF, with correcting constants if needed. The outputs of the ePTF are the hydraulic properties at selected matric suctions, akin to obtaining measurements, thus allowing the fit of different equations as well as combining any available measurements. Testing of the ePTF showed promising performance, with reasonably accurate estimates of the water retention of an independent dataset. Root mean square error values averaged 0.06 m3 m–3 for various New Zealand soils, which is within the accuracy level of published PTF studies. The largest errors were found for soils with high clay content, for which the ePTF should be used with care. The performance of the ePTF for estimating soil hydraulic conductivity was not as reliable as for water content, exhibiting large scatter. Predictions of saturated hydraulic conductivity were of the same magnitude as the measurements, whereas the unsaturated values were generally under-predicted. The conductivity data available for this study were limited and highly variable. The estimates for hydraulic conductivity should therefore be used with much care, and future research should address measurements and analysis to improve the predictions. The ePTF was also used to parameterise the SWIM soil module for use in Agricultural Production Systems Simulator (APSIM) simulations. Comparisons of drainage predicted by APSIM against results from lysimeter experiments suggest that the use of the derived ePTF is suited for the estimation of soil parameters for use in modelling. The ePTF is not envisaged as a substitute for measurements but is a useful tool to complement datasets with limited amounts of measured data.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3