Molecular characterisation of high molecular weight glutenin allele Glu-B1h encoding 1Bx14+1By15 subunits in bread wheat (Triticum aestivum L.)

Author:

Xiao Lele,Wang Ke,Liu Yanlin,Ye Xingguo,Ma Wujun,Yan Yueming

Abstract

In this study, the authentic high molecular weight glutenin (HMW-GS) allele Glu-B1 h encoding for subunits 1Bx14 and 1By15 from German bread wheat cultivars Hanno and Imbros was identified and cross-verified by a suite of established protein analysis technologies, including sodium dodecyl sulfate-polyacrylamide gel electrophoresis, reversed-phase high-performance liquid chromatography, reversed-phase ultra-performance liquid chromatography, and matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS). The complete encoding sequences were isolated by allele-specific PCR, and consist of 2367 bp for 1Bx14 and 2151 bp for 1By15 and encode 789 and 717 amino acid residues, respectively. The deduced molecular masses of two subunit genes were 82 340.13 Da and 74 736.13 Da, corresponding well to those determined by MALDI-TOF-MS. The presence and authenticity of 1Bx14 and 1By15 subunits were further confirmed by liquid chromatography coupled to tandem mass spectrometry and heterologous expression in E. coli. Comparative analysis demonstrated that 1Bx14 possessed one deletion and 20 single-nucleotide polymorphism variations compared with seven other Glu-B1 x-type HMW-GS genes that mainly resulted from C–T substitutions, whereas compared with five other Glu-B1 y-type HMW-GS genes, 1By15 displayed few variations. Phylogenetic analysis based on the complete coding sequences of the published HMW-GS genes showed that 1Bx14 had a high divergence with other 1Bx subunit genes, whereas 1By15 displayed greater similarity with 1By20. A possible evolutionary route for 1Bx14 gene formation is proposed, which might have resulted from an intra-strand illegitimate recombination event that occurred ~1.32 million years ago.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3