Investigation by electro-ultrafiltration on N and P distribution in rhizosphere and bulk soil of field-grown corn

Author:

Arienzo Michele,Meo Vincenzo Di,Adamo Paola,Violante Pietro

Abstract

The distribution of available levels of N and P in rhizosphere and bulk soils of field-grown corn (Zea mays cv. Forban 300) in response to N, P, K fertiliser supply was investigated by electro-ultrafiltration (EUF). This technique allowed 3 operationally defined nutrient fractions to be extracted: soluble and immediately available (EUF-I), available (EUF-II), and retained reserve (EUF-III). For nitrogen, the NO3– and NH4+ forms were measured in the EUF extracts. The investigation was carried out providing N, N+P, N+K, and N+K+P. The results indicated that only at 40 days after sowing (DAS), rhizosphere soil was significantly less alkaline than bulk soil and characterised by higher organic carbon levels that increased with crop age. The slightly more acidic environment of the rhizosphere at 40 DAS seemed to be related to the lower levels of EUF-N-NH4+ fractions of rhizosphere soil (0.1–3.2 mg NH4+/kg) relative to bulk soil (0.5–4.9 mg NH4+/kg), with more significant differences observed for the soluble NH4+ pool, EUF-I, and when N was combined with P (N+P) or K (N+K). The extensive nitrification of NH4+ and the initially greater availability of NO3– accounted for the larger extraction of NO3– in the EUF-I-NO3– fraction at 40 DAS. The levels of labile extracted NO3– were ~8 times greater than EUF-II and EUF-III fractions, with significantly higher values of 27.4 (rhizosphere soil) and 18.8 mg NO3–/kg (bulk soil) for the N+P treatment. Due to plant uptake, at 40 DAS the EUF-I-NO3– fraction of rhizosphere soil was also the only pool significantly (P�< 0.05) lower than bulk soil, with differences that for N+P treatment were in excess of 45%. Later, at 60–120 DAS, during maximum corn nutrient demand, the levels of all of the EUF-N-NO3– fractions became higher in bulk soil. The pool of labile P, EUF-I-P, was higher in the rhizosphere soil and related to pH lowering, which occurred especially at 40 DAS and fell below the adequate level indicated by the ratio EUF-II-P/EUF-I-P. The use of the EUF methodology allowed a rough estimate of the amounts of different available nutrients of the studied soil as well as of their relationships with soil properties. Issues of rhizosphere sampling in situ were considered and discussed.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3