A dynamic biophysical fugacity model of the movement of a persistent organic pollutant in Antarctic marine food webs

Author:

Cropp Roger,Kerr Georgina,Bengtson-Nash Susan,Hawker Darryl

Abstract

Environmental contextPersistent organic pollutants (POPs) are potentially toxic chemicals capable of long distance transport and are often found far from their source. Little is known of their behaviour in Antarctica, where the marine plankton food web is driven by strong seasonal variations in solar radiation. Here the first dynamic coupled ecosystem–fugacity model to describe how POPs distribute through the Antarctic environment is presented. The model is used to identify the important processes that govern the presence of hexachlorobenzene in Antarctic plankton. AbstractPolar regions can be repositories for many persistent organic pollutants (POPs). However, comparatively little is known of the movement and behaviour of POPs in Antarctic ecosystems. These systems are characterised by strong seasonal effects of light on plankton dynamics. This work describes a mass-conserving, fugacity-based dynamic model to describe the movement of POPs in the Antarctic physical and plankton systems. The model includes dynamic corrections for changes in the population volumes and the temperature dependence of the fugacity capacities, and was developed by coupling a dynamic Nutrient–Phytoplankton–Zooplankton–Detritus (NPZD) ecosystem model to fugacity models of the chemistry and biology of the Southern Ocean. The model is applied to the movement of hexachlorobenzene, a POP found in the Antarctic environment. The model predicts that the burden of HCB in the plankton varies with the seasonal cycle in Antarctic waters, and induces a seasonal variation in the biomagnification factor of zooplankton. This suggests that time series of POP concentrations in Antarctic biotic and abiotic systems should be measured over complete seasonal cycles. Furthermore, detritus is shown to be a key contributor to the movement of POPs in polar environments, linking physical and biological components of the model.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3