Association of CYP19A1 gene polymorphisms with anoestrus in water buffaloes

Author:

El-Bayomi Khairy M.,Saleh Ayman A.,Awad Ashraf,El-Tarabany Mahmoud S.,El-Qaliouby Hadeel S.,Afifi Mohamed,El-Komy Shymaa,Essawi Walaa M.,Almadaly Essam A.,El-Magd Mohammed A.

Abstract

Cytochrome P450 aromatase (encoded by the CYP19A1 gene) regulates oestrogen biosynthesis and so plays an essential role in female fertility. We investigated the genetic association of CYP19A1 with the risk of anoestrus in Egyptian water buffaloes. A total of 651 animals (326 anoestrous and 325 cycling) were used in this case-control study. Using single-strand conformation polymorphisms and sequencing, four single nucleotide polymorphisms (SNPs) were detected; c.−135T > C SNP in the 5′UTR and three non-synonymous SNPs: c.559G > A (p. V187M) in Exon 5, c.1285C > T (p. P429S) and c.1394A > G (p. D465G) in Exon 10. Individual SNP-anoestrus association analyses revealed that genotypes (CC, AA and GG) and alleles (C, A and G) of the −135T > C, c.559G > A and c.1394A > G SNPs respectively were high risk for anoestrus. A further analysis confirmed that these three SNPs were in linkage disequilibrium. Additionally, haplotypes with two (TAG/122 and CAA/221) or three (CAG/222) risk alleles were significantly associated with susceptibility to anoestrus, lower blood levels of both oestradiol and antioxidant enzymes (superoxide dismutase, glutathione peroxidase (GPX) and catalase) and downregulated expression levels of CYP19A1, oestrogen receptor α and Gpx3 in the ovary, as well as increased serum level of malondialdehyde. This suggests the occurrence of a high incidence of oxidative ovarian damage and subsequently ovarian inactivity in buffaloes carrying risk alleles. Therefore, with this study we suggest the selection of buffaloes with protective alleles at these SNPs to improve the reproductive efficiency of the herd.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3