Effectiveness of hydrated lime and artificial zeolite amendments and sedum (Sedum sediforme) plant cover in controlling soil erosion from an acid soil

Author:

Andry Henintsoa,Yamamoto Tahei,Inoue Mitsuhiro

Abstract

There are over 350 different species of sedum (Sedum spp.) and most of them can tolerate harsh conditions including very cold to hot temperatures, drought, and poor and stony soil. Sedum plants are used in rock gardens and edging flower beds, and for greening the tops of buildings, cottages, and thatched roofs. However, little is known about the effectiveness of sedum as vegetation cover in protecting soil erosion from a road embankment made of acid soil. Acid soil is believed to be vulnerable to soil erosion and is not suitable for plant growth. Liming treatment is required first before revegetation to alleviate the soil acidity; however, lime incorporation may affect the soil physical properties and, consequently, runoff and sediment generation. A rainfall simulation study was conducted to test the effectiveness of hydrated lime and artificial zeolite as amendments and Sedum sediforme (Rupestria group) as vegetation cover in controlling soil erosion from an acid soil taken from mountain cuts in Yamaguchi prefecture, Japan, where it is used for road embankment. The soil was treated with 0.5% lime and 10% zeolite. Two rainfall intensities of 30 and 60 mm/h were tested for 2 and 1 h, respectively, on sedum-growing soil plots measuring 0.50 by 0.30 by 0.05 m. Three levels of vegetation cover (bare soil, 25%, 75%) of sedum plant of 5-month growth under 2-day irrigation intervals were tested. The incorporation of hydrated lime and artificial zeolite amendments improved wet aggregate stability, which contributed to significant decrease in surface runoff, sediment concentration, and total soil loss by rain splash from the bare soil. Zeolite was more effective in promoting plant growth than the lime treatment; as a result the decrease in sediment generation and soil loss by rain splash, compared with the control, was larger with zeolite than with lime. Under both intensities of simulated rain, the sediment concentration and total soil loss by rain splash decreased significantly (P < 0.05) with increasing surface cover. The correlation between cumulative soil loss (CSL) and cumulative surface runoff was linear and significant (P < 0.001) and the slope coefficient decreased with increasing surface cover. This suggests that the sediment carrying capacity or the erosivity of the surface runoff was constant and it decreased with increasing surface cover. The sedum cover reduced the CSL up to 72 and 79% under 30 and 60 mm/h rainfall intensities, respectively. The mean weight diameter of the soil sediment transported by runoff and soil loss by rain splash were significantly increased, and therefore, the silt and clay proportion of the crust material formed on the soil surface decreased up to 6 and 16% under 25 and 75% vegetation cover, respectively. These results demonstrate that hydrated lime and artificial zeolite could be used as amendments and sedum plant as vegetation covers in controlling soil erosion from an acid soil.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3