Housekeeping gene selection in poplar plants under Cd-stress: comparative study for real-time PCR normalisation

Author:

Basa Brigitta,Solti Ádám,Sárvári Éva,Tamás László

Abstract

Real-time RT–PCR is currently the most sensitive, specific and precise approach to analyse gene expression changes in plant stress studies. The determination of biologically meaningful transcript quantities requires accurate normalisation of the raw data. During relative quantification the reliability of the results depends on the stable expression of the endogenous control genes across the experimental samples. Four widely used internal control genes (cyclophilin, elongation factor 1α, polyubiquitin, tubulin β-chain) and two potential candidates (serine/threonine-protein phosphatase 2A and ubiquitin-conjugating enzyme) genes were assessed under Cd-stress and at different developmental stages in leaves of Populus jacquemontiana D. var. glauca H. Complementary DNA (RiboGreen) based quantification method revealed variations in the expression level of reference genes. The variability was more pronounced under severe stress conditions. Less variation was observed in the case of ef-1α, pp2a and ubc10. Transcript level changes of a target gene, psa-h, was also evaluated by two independent normalisation strategies, by the RiboGreen method or by using multiple references. The impact of variability of reference gene on the target gene evaluation was demonstrated. It was proved that in the absence of suitable housekeeping genes, for example under severe stress, RiboGreen method is convenient tool for transcript normalisation.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3