Effects of heat stress on

Author:

Amini A.ORCID,Pirmohammadi R.,Khalilvandi-Behroozyar H.ORCID,Mazaheri-Khameneh R.

Abstract

Context Interest in studying heat stress (HS) has increased significantly due to the problems associated with increasing global warming. Heat stress has very destructive effects on the health and performance of livestock. Aims Our objective was to investigate the effects of heat stress on in vivo and in vitro ruminal metabolism in fat-tailed Iranian sheep. Methods Fourteen intact non-lactating and non-pregnant mature fat-tailed Makoei ewes (67.5 ± 2.5 kg BW) were kept indoors for 24 h/day and randomly assigned to HS (33.0–41.0°C and a temperature–humidity index (THI) of ≥83 for 24 h/day) or thermoneutral (TN; 24.5 ± 2.3°C and a THI of 66.1 ± 2.5) condition in two consecutive experimental periods. At the end of first experimental period, the animals in each group were exchanged with another group. The ewes were fed a total mixed ration two times a day, composed of lucerne hay (33%) and corn silage (1:2) to meet their maintenance metabolisable energy and protein requirements. Key results HS ewes had lower dry-matter (DM) intake than did TN ewes (P < 0.05). HS increased the in vivo DM, organic matter (OM) and neutral detergent fiber digestibility (P < 0.05), but crude protein digestibility was not affected. Total volatile fatty acid concentration and pH were not affected by HS. However, propionate molar percentage was increased and N-NH3 concentration was decreased by HS. In vitro gas production of three different tested feeds was lower in rumen fluid collected from HS than that from TN group, but DM and OM digestibility and methane emission were decreased only in the case of Orchard grass (P < 0.05). Conclusions and implications In general, HS had detrimental effects on DM intake and in vitro nutrient digestibility but increased in vivo nutrient digestibility, and changed microbial population.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3