Growth and the distribution of phosphorus in wheat developed under various phosphorus and temperature regimes

Author:

Batten GD,Wardlaw IF,Aston MJ

Abstract

Experiments were designed to examine the effect of the level and duration of application of phosphorus (P) on yield in wheat and the effect of growth conditions prior to anthesis on the utilisation of P taken up during the early stages of development. In the first experiment, wheat (Triticum aestivum cv. Kite) was grown in sand and supplied with a complete nutrient solution containing either 1 mM phosphate or 0.25 mM phosphate. The supply of P was maintained until grain maturity, or stopped at different stages of development (floral initiation, flag leaf emergence, anthesis). The increase in total plant dry matter over this period ranged from 8.8 to 17.6 g/plant, with the 1.0 mM P supply and from 4.1 to 9.5 g/plant with the 0.25 mM P supply. Supply of P beyond anthesis resulted in more tiller dry matter and increased the P content of the grain, but did not increase grain yield at either level. With 1 mM P to maturity, up to 21% P of the grain P could be attributed to retranslocation of P within the plant after anthesis. With 0.25 mM P to floral initiation, 58% of the grain P could be attributed to such retranslocation. In a second experiment plants (cv. Kite) were grown initially at 18/13�C with 0.25 mM P until floral initiation and thereafter with a P-free solution until maturity. Between floral initiation and anthesis plants were placed in six dayhight temperatures, extending (in 3�C steps) from 15/10�C to 30/25OC, and then returned to the standard condition of 18/13�C. Higher pre-anthesis temperatures reduced the pre-anthesis growth period and the plant height, but increased the leaf phosphorus concentration and uptake of phosphorus per plant in both the pre- and post-anthesis periods. Net CO2 exchange indicated that leaf senescence in P-deficient plants was closely associated with the export of nitrogen as well as the export of P. Grain P increased from 0.15% to 0.3% when the preanthesis temperature was increased from 15/10 to 30/25�C, although grain yield per main culm did not vary greatly. These findings highlight the importance of environmental conditions in determining the level of P deficiency in wheat, and show that grain yield is not limited by the amount of P in the grain.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3