Inter- and trans-generational effects of gestational ghrelin imbalance on development and reproduction in the mouse

Author:

Torres Pedro Javier,Luque Eugenia Mercedes,Ramírez Nicolás David,Carlini Valeria Paola,Martini Ana CarolinaORCID

Abstract

Context and aims We have demonstrated that ghrelin (Ghrl) participates in fetal programming, since intragestational hyperghrelinaemia increased pup’s growth and a Ghrl-receptor antagonist accelerated offspring’s sexual maturation and impaired their adult reproductive function. Now, we aim to analyse if these phenotypic changes (found in F1) also occurred in F2 and/or F3 generations. Methods We treated mice dams (F0), with 4 nmol/animal/day of Ghrl or 6 nmol/animal/day of an antagonist [Ant:(d-Lys3)GHRP6] from day 1 of pregnancy until delivery. When F1 female pups reached adulthood, they were paired to obtain F2, and subsequently, F2 females were paired to obtain F3. Parameters evaluated in F2 and F3 pups were: growth, physical development, neurobiological maturation, puberty onset and in adulthood, reproductive function. Key results The F2 and F3 Ant groups showed a significant increase in litter size. Although no differences were detected in the weight of these pups at birth, in adulthood, they were heavier. At F3, pups from the Ant group showed advanced incisors eruption and eye opening compared to controls. Furthermore, F3 male pups from the Ant group showed earlier testis descent, although in adulthood, these males exhibited reduced sperm concentration in comparison to Ghrl. No differences were detected in F2 or F3 females regarding puberty onset or reproduction. Conclusions and implications Some fetal programming effects of Ghrl seen in F1, also appeared transgenerationally. Since many women at reproductive age suffer from conditions with reduced Ghrl levels (i.e. obesity or polycystic ovarian syndrome), these results could be relevant to the health of their descendants.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3