Estrogen sulfamates: a new approach to oral estrogen therapy

Author:

Elger W.,Barth A.,Hedden A.,Reddersen G.,Ritter P.,Schneider B.,Züchner J.,Krahl E.,Müller K.,Oettel M.,Schwarz Sigfrid

Abstract

Sulfamate substitution (-O-SO 2-NH 2) at carbon atom 3 of the steroid skeleton leads to orally active prodrugs of estrogens with much higher systemic, but lower hepatic, estrogenic activity than their parent steroids. This dissociation is achieved by first passage through the liver in erythrocytes, followed by systemic hydrolysis which releases the ‘parent’ estrogen. In the rat, orally administered tritiated estradiol sulfamate, unlike estradiol, appears in the circulation at high concentrations. At C max , approximately one third of the administered dose forms a depot in the circulation (98% in erythrocytes, 2% in plasma). Significant estradiol, estrone and estrone sulfate concentrations were recorded in plasma during depletion of the red blood cell pool. Estradiol sulfamate (J995) has no estrogen receptor affinity per se or estrogenic activity in vitro ( i.e. without hydrolysis). Its oral uterotropic activity in rats is approximately 100 times greater than that of estradiol, however, its hepatotropic activity is only marginally elevated. These functions include bile secretion, the secretion of angiotensinogen, lipoproteins (total and high-density lipoprotein cholesterol) and insulin-like growth factor I (IGF-I). Orally administred estradiol sulfamate led to systemic estrogenic effects without significant hepatic responses, whereas estradiol and other ‘conventional’ estrogens exerted parallel systemic and hepatic estrogenic effects. Sulfamate technology represents an approach to the use of natural estrogens for fertility control and hormone replacement therapy in both genders. In this context, reduced effects on hemostatic factors, angiotensinogen, bile and IGF-I secretion seem the most important aspects. In addition, blood concentrations of estrogens are less variable than with conventional estrogens.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3