Carbon (δ13C) dynamics in agroecosystems under traditional and minimum tillage systems: a review

Author:

Smith C. J.ORCID,Chalk P. M.

Abstract

Following cultivation, substantial loss of soil organic matter occurs in surface soil layers. No-till is an agronomic practice to reverse or slow the loss of soil organic matter. We reviewed 95 research papers that used 13C natural abundance of soils to quantify the impact of tillage on the C dynamics of cropping systems. New C (from current cropping systems) accumulated in the surface soil under no-till, whereas the most extreme cultivation (mouldboard ploughing) mixed new C throughout the soil. There was a decline in soil C with years of cultivation. Compared with land that had been tilled, no-till generally had little impact on the accumulation on soil organic C. Tillage and residue retention caused stratification in C stocks that depended on tillage depth, with the highest C concentrations and stocks found in the surface under no-till. Shifts in the δ13C signature indicated significant exchange of ‘new’ C for the original (old) C. Tillage methods had no impact on the size and δ13C signature of the microbial biomass pool. Change in δ13C indicates that microbial biomass rapidly incorporates new carbon. The largest change in the δ13C values (Δ13C) was observed in the coarse sand fraction, whereas the smallest change occurred in the clay fraction. Comparison of conventional vs no-till showed inconsistent results on the effect of tillage on C in the different particle size fractions. Natural 13C abundance data show that no-till cropping systems do not result in increases in soil organic C in the top 0.30 m of soil.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3