Commonalities in Metabolism of Arsenicals

Author:

Adair Blakely M.,Waters Stephen B.,Devesa Vicenta,Drobna Zuzana,Styblo Miroslav,Thomas David J.

Abstract

Environmental Context. Health effects associated with inorganic arsenic include various cancers and increased risk of diabetes. Millions of people in Bangladesh and India are at risk through use of contaminated drinking water. When humans ingest inorganic arsenic, it is rapidly converted to methylated metabolites. Although this methylation process is largely understood, the metabolism of other arsenicals (e.g. arsenosugars to dimethylarsenic) is very unclear. Connections among pathways for metabolism of various arsenicals are now being elucidated. Commonalities and differences in these pathways may be important determinants of the risk associated with exposure to these agents. Abstract. Elucidating the pathway of inorganic arsenic metabolism shows that some of methylated arsenicals formed as intermediates and products are reactive and toxic species. Hence, methylated arsenicals likely mediate at least some of the toxic and carcinogenic effects associated with exposure to arsenic. Trimethylarsonium compounds and arsenosugars are two other classes of arsenicals to which humans are routinely exposed and there is evidence that both classes are metabolized to produce methylated arsenicals. Here, we review evidence for production of methylated metabolism and consider the challenges posed in unraveling a complex web for metabolism of arsenicals in humans.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3