Semiconducting Polymers Containing Coordinated Metal Ions

Author:

Bolto BA,Weiss DE

Abstract

Ligands of the bis-(8-hydroxyquinoline) type were selected for the preparation of semiconducting coordination polymers. After some preliminary investigations in solvents, melt techniques with reaction temperatures of at least 250°C were found to be necessary for the formation of a conducting product from chloranil, o-phenylene- diamine, and a metal salt, which is postulated to involve polycoordination of a quinoxalo- phenazine derivative. Of 13 different metals studied, the FeCl2 polymer was found to be the best conductor, having a resistivity of 38 kΩ cm with a preparation temperature of 350°C, the resistivity remaining at this level for preparation temperatures up to 450°C. Studies of the reactions of the FeCl2 and FeCl3 polymers suggest intermolecular linking other than through the metal, a t least two types of organic cross-linking being evident. The presence of phenazinium salt structures in both polymers is postulated to account for the large amounts of chloride ion liberated by alkali. The conducting properties are attributed to interaction between donor nitrogens and acceptor groups such as the metal ion, quinones, and quaternary nitrogens linked within a fully conjugated polycyclic system. The existence of the metal in more than one oxidation state, which might occur with the FeCl2 polymer, may be of further benefit.

Publisher

CSIRO Publishing

Subject

General Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synthesis and characterization of metal containing polychloranilamides;Macromolecular Chemistry and Physics;1997-12

2. Polymer anchored metal complexes;Polymer Bulletin;1991

3. Structural determination of pyrolyzed PI-2525 polyimide thin films;Journal of Applied Polymer Science;1988-04

4. Electrical conductivity of chelate polymers. I;Journal of Macromolecular Science, Part B;1986-04

5. Control of electrical properties of polymers by chemical modification;Polymer;1984-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3