Magnesium alleviates plant toxicity of aluminium and heavy metals

Author:

Rengel Z.,Bose J.,Chen Q.,Tripathi B. N.

Abstract

Magnesium (Mg) is an essential nutrient that can alleviate soilborne toxicity of many ions. This review paper critically assesses the literature on interactions and mechanisms influencing Mg alleviation of aluminium (Al) and heavy metal toxicity. Hydrated radii of Mg2+ and Al3+ are similar; therefore, these two ions compete for binding to ion transporters and other important biological molecules. In monocotyledonous species such as rice and wheat, millimolar concentrations of Mg alleviate Al toxicity, mainly by decreasing Al saturation and activity at cell wall and plasma membrane binding sites. In dicotyledonous legume species such as soybean (Glycine max), rice bean (Vigna umbellata) and broad bean (Vicia faba), micromolar concentrations of Mg may enhance biosynthesis of organic ligands and thus underpin alleviation of Al toxicity. Resistance to Al may be enhanced by increased expression of the genes coding for Mg transporters, as well as by upregulation of activity of Mg-transport proteins; intracellular Mg2+ activity may thus be increased under Al stress, which may increase the activity of H+-ATPases. In Vicia faba, Mg-related enhancement in the activity of plasma membrane H+-ATPase under Al stress was found to be due to post-translational modification (increased phosphorylation of the penultimate threonine as well as association with regulatory 14-3-3 proteins), resulting in increased resistance to Al stress. Magnesium can alleviate heavy metal stress by decreasing negative electrical potential and thus metal ion activities at the plasma membrane surface (physico-chemical competition), by enhancing activities of enzymes involved in biosynthesis of organic ligands, and by increasing vacuolar sequestration of heavy metals via increasing H+-pumping activity at the tonoplast. Future work should concentrate on characterising the role of intracellular Mg2+ homeostasis and Mg transporters in alleviating metal stress as well as in transcriptional, translational and post-translational regulation of H+-pumps and enzymes involved in biosynthesis and exudation of organic ligands.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3