Pregnancy recognition and conceptus implantation in domestic ruminants: roles of progesterone, interferons and endogenous retroviruses

Author:

Spencer Thomas E.,Johnson Greg A.,Bazer Fuller W.,Burghardt Robert C.,Palmarini Massimo

Abstract

The present review highlights new information on pregnancy recognition and conceptus development and implantation in sheep with respect to regulation by progesterone, interferons and endogenous retroviruses. After formation of the corpus luteum, progesterone acts on the endometrium and stimulates blastocyst growth and elongation to a filamentous conceptus (embryo/fetus and associated extra-embryonic membranes). The envelope of endogenous retroviruses related to Jaagsiekte sheep retroviruses appears to intrinsically regulate mononuclear trophectoderm cell proliferation and differentiation into trophoblast giant binucleate cells. The mononuclear trophectoderm cells of elongating sheep conceptuses secrete interferon-τ, which acts on the endometrium to prevent development of the luteolytic mechanism by inhibiting transcription of the gene for the oestrogen receptor α in the luminal and superficial ductal glandular epithelia. These actions prevent oestrogen-induced transcription of the oxytocin receptor gene and, therefore, oxytocin-induced luteolytic pulses of prostaglandin F2α. Progesterone downregulation of its receptors in luminal and glandular epithelia correlates temporally with a reduction in anti-adhesive mucin 1and induction of secreted galectin 15 (LGALS15) and secreted phosphoprotein 1, which are proposed to regulate trophectoderm proliferation and adhesion. Interferon-τ acts on the endometrial lumenal epithelium to induce WNT7A and to stimulate LGALS15, cathepsin L and cystatin C, which are candidate regulators of conceptus development and implantation. The number of potential contributors to maternal recognition and establishment of pregnancy continues to grow and this highlights our limited appreciation of the complexity of the key molecules and signal transduction pathways that intersect during these key developmental processes. The goal of improving reproductive efficiency by preventing embryonic losses that occur during the peri-implantation period of pregnancy in domestic ruminants provides the challenge to increase our knowledge of endometrial function and conceptus development.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3