Transcriptional analysis reveals the response mechanism of soybean (Glycine max) Kangxian 2 to soybean cyst nematode (Heterodera glycines) HG Type 0

Author:

Jiang Haipeng,Bu Fanshan,Tian Lizheng,Sun Qiuxia,Bao Dongfang,Zhao Xue,Han YingpengORCID

Abstract

Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is a common disease of soybean (Glycine max (L.) Merr.) worldwide, seriously affecting yield. Kangxian 2 is a soybean variety with a high level of resistance to H. glycines (HG) Type 0 (SCN race 3) and a yellow seed coat. However, we know little about the mechanism of resistance to HG Type 0 in Kangxian 2. In this study, we used the Illumina HiSeq high-throughput sequencing platform to analyse the transcriptome of Kangxian 2 and obtained 65.74 Gb clean data. Transcriptional changes in Kangxian 2 caused by HG Type 0 stress after 0–10 days are described. Kangxian 2 showed different levels of gene expression after inoculation, and under HG Type 0 stress after different times. Overall, 6854 HG Type 0-induced genes and 5328 HG Type 0-repressed genes were found to be differentially regulated. The greatest number of differential genes annotated to cellular process, metabolic process, single-organism process, binding, catalytic activity and other pathways. In addition to findings of differentially expressed genes similar to other published work, such as the regulation of biosynthesis of many secondary metabolites, carbon sequestration of photosynthetic organisms, other types of O-polysaccharide biosynthesis, phenylpropane biosynthesis, pyruvate metabolism and other pathways, this study also revealed the differential regulation of genes related to the diarylheptanoid and gingerol biosynthesis pathway and found some metabolic pathways that were specifically expressed in the syncytial initiation and establishment stages. Gene expression analyses using real-time fluorescence quantitative PCR showed that the expression of GmMADS and GmTUB changed strongly after 7 days and 10 days of HG Type 0 stress compared with the control. We conclude that GmMADS and GmTUB transcription factor genes may play an important role in the resistance of Kangxian 2 to HG Type 0 stress.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3