Assessing sea level-rise risks to coastal floodplains in the Kakadu Region, northern Australia, using a tidally driven hydrodynamic model

Author:

Bayliss Peter,Saunders Kate,Dutra Leo X. C.,Melo Lizandra F. C.,Hilton James,Prakash Mahesh,Woolard Fletcher

Abstract

The low-lying coastal floodplains of the Kakadu Region in tropical northern Australia encompass World Heritage Kakadu National Park and are highly vulnerable to future sea level-rise (SLR) and extreme weather events, yet there are no modelling tools to assess potential impacts of saltwater inundation (SWI) on freshwater ecosystems and to evaluate future management options. A tidally driven hydrodynamic model was developed to simulate the frequency and extent of SWI in the Kakadu Region for the following four mean SLR scenarios: 0m (present-day, 2013); 0.14m (2030); 0.70m (2070); and 1.1m (2100). Simulations were undertaken at 60-m spatial resolution using October dry-season tides, and a digital elevation model (0.10-m vertical resolution) constructed from LiDAR point cloud data was used to resolve coastal and river-system terrains. Model outputs (maximum extent and frequency of SWI) were used to assess potential loss of freshwater floodplains for each scenario at a park-wide scale and for three case-study areas that differ in tidal influence. Results show little loss by 2030 (–3%), a possible threshold effect by 2070 (–42%) and ameliorating after 2100 (–65%). Although freshwater floodplains further from the coast showed least exposure to simulated SLR, indicating potential refuge areas, all floodplains on Kakadu will be exposed to SWI by 2132 (+117 years).

Publisher

CSIRO Publishing

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3