Regional shifts in phytoplankton succession and primary productivity in the San Antonio Bay System (USA) in response to diminished freshwater inflows

Author:

Roelke Daniel L.,Li Hsiu-Ping,Miller-DeBoer Carrie J.,Gable George M.,Davis Stephen E.

Abstract

In many areas of the world, human consumption and climate change threaten freshwater inflows to coastal ecosystems. In the San Antonio Bay System, USA (SABS), freshwater inflows are projected to decrease in the coming decades. Our 30-month sampling period of SABS captured a prolonged period of higher inflows and a prolonged period of lower inflow. Our observations offer insights as to how this system might respond to lower freshwater inflows in the future. Of most importance in our observations was a regional shift that occurred in maximum primary productivity from the middle and lower SABS towards the upper SABS. In addition, a warm-month succession of phytoplankton taxa in the upper SABS that occurred during the wet period did not occur during the dry period. We also observed spatiotemporal shifts in apparent nitrogen- and phosphorus-limitation, with both appearing to influence phytoplankton biomass and primary productivity. Changes to SABS phytoplankton such as these might deleteriously affect organisms of higher trophic levels with life stages that are regionally confined by other factors, such as depth, macrophyte presence, and existence of hard-bottomed substrate, which in this bay system includes both commercially important and endangered species.

Publisher

CSIRO Publishing

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3