Abstract
Plasmodesmata (PD) are cytoplasmic and membrane-lined microchannels that enable symplasmic communication in plants, which is involved in the regulation of cell differentiation. The presented results emphasise the qualitative and quantitative analyses of PD, which are the basis of the symplasmic communication. The cells that initiate various development programmes create symplasmic domains that are characterised by different degrees of symplasmic communication. Changes in symplasmic communication are caused by the presence or absence of PD and/or the ability of signals to move through them. In the presented studies, somatic embryogenesis was used to describe the characteristics of the PD within and between the symplasmic domains in explants of the Arabidopsis thaliana (L.) Heynh ecotype Columbia-0 and 35S:BBM transgenic line. Transmission electron microscopy was used to describe the cells that regain totipotency/pluripotency during somatic embryogenesis, as well as the number and shape of the PD in the different symplasmic domains of the explants and somatic embryos. Array tomography was used to create a 3D reconstruction of the protodermal cells of the somatic embryos with particular emphasis on the PD distribution in the cell walls. The results showed that there were different frequencies of the PD within and between the symplasmic domain that emerges during somatic embryogenesis and between the Col-0 and 35S:BBM somatic embryos with regard to the differences in the shape of the PD.
Subject
Plant Science,Agronomy and Crop Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献