Author:
Sun Jianfei,Mei Qiong,Wei Bo,Huan Long,Xie Ju,He Maoxia
Abstract
Environmental contextAn important product of biomass burning is catechol: its presence in the atmosphere can have adverse effects on health, and can lead to the formation of secondary organic aerosols. We report a theoretical study on the mechanisms and kinetics of removal of catechol from the atmosphere by reaction with ozone. These data will provide insight into the ozonolysis of other lignin compounds produced by biomass burning.
AbstractWe examined the ozone-initiated oxidation of catechol, an intermediate of lignin pyrolysis in the atmosphere, by using the theoretical computational method at the M06-2X/aug-cc-pVDZ//M06-2X/6-31+G(d,p) level. Six ozone-addition channels of the initial reactions and the further reactions of the Criegee intermediates are proposed. The complete degradation processes of the Criegee intermediates in the presence of NO and H2O were elucidated. The predicted reaction products for the ozonolysis of catechol, such as malealdehyde (P10), oxalic acid (P11) and CO2, were detected experimentally in the gas-phase. Moreover, the microcanonical rate constants of the crucial elementary reactions were determined by the Rice–Ramsperger–Kassel–Marcus theory. The total rate constant for the ozonolysis of catechol under atmospheric conditions is 1.37 × 10−18 cm3 molecule−1 s−1, which compares favourably to the experimentally determined values. The bimolecular rate constants showed positive dependence on temperature and negative dependence on pressure. The atmospheric lifetime of catechol with respect to ozone was estimated to be 12.07 days. We also found that the ozonolysis of catechol is more likely to occur in aqueous solution. The present work has provided a comprehensive investigation of the ozonolysis of catechol. The methods we used can serve as a model for analysing the ozonolysis of other lignin compounds.
Subject
Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献