Phenotyping for drought tolerance in grain crops: when is it useful to breeders?

Author:

Passioura J. B.

Abstract

Breeding for drought tolerance in grain crops is not a generic issue. Periods of drought vary in length, timing and intensity and different traits are important with different types of drought. The search for generic drought tolerance using single-gene transformations has been disappointing. It has typically concentrated on survival of plants suffering from severe water stress, which is rarely an important trait in crops. More promising approaches that target complex traits tailored to specific requirements at the different main stages of the life of a crop, during: establishment, vegetative development, floral development and grain growth are outlined. The challenge is to devise inexpensive and effective ways of identifying promising phenotypes with the aim of aligning them with genomic information to identify molecular markers useful to breeders. Controlled environments offer the stability to search for attractive phenotypes or genotypes in a specific type of drought. The recent availability of robots for measuring large number of plants means that large numbers of genotypes can be readily phenotyped. However, controlled environments differ greatly from those in the field. Devising pot experiments that cater for important yield-determining processes in the field is difficult, especially when water is limiting. Thus, breeders are unlikely to take much notice of research in controlled environments unless the worth of specific traits has been demonstrated in the field. An essential link in translating laboratory research to the field is the development of novel genotypes that incorporate gene(s) expressing a promising trait into breeding lines that are adapted to target field environments. Only if the novel genotypes perform well in the field are they likely to gain the interest of breeders. High throughput phenotyping will play a pivotal role in this process.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 233 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3