Assessing the susceptibility of semiarid rangelands to wildfires using Terra MODIS and Landsat Thematic Mapper data

Author:

Chen Fang,Weber Keith T.,Anderson Jamey,Gokhal Bhushan

Abstract

In order to monitor wildfires at broad spatial scales and with frequent periodicity, satellite remote sensing techniques have been used in many studies. Rangeland susceptibility to wildfires closely relates to accumulated fuel load. The normalised difference vegetation index (NDVI) and fraction of photosynthetically active radiation (fPAR) are key variables used by many ecological models to estimate biomass and vegetation productivity. Subsequently, both NDVI and fPAR data have become an indirect means of deriving fuel load information. For these reasons, NDVI and fPAR, derived from the Moderate Resolution Imaging Spectroradiometer on-board Terra and Landsat Thematic Mapper imagery, were used to represent prefire vegetation changes in fuel load preceding the Millennial and Crystal Fires of 2000 and 2006 in the rangelands of south-east Idaho respectively. NDVI and fPAR change maps were calculated between active growth and late-summer senescence periods and compared with precipitation, temperature, forage biomass and percentage ground cover data. The results indicate that NDVI and fPAR value changes 2 years before the fire were greater than those 1 year before fire as an abundance of grasses existed 2 years before each wildfire based on field forage biomass sampling. NDVI and fPAR have direct implication for the assessment of prefire vegetation change. Therefore, rangeland susceptibility to wildfire may be estimated using NDVI and fPAR change analysis. Furthermore, fPAR change data may be included as an input source for early fire warning models, and may increase the accuracy and efficiency of fire and fuel load management in semiarid rangelands.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3