Author:
A Donald Jennifer,Cooper DW
Abstract
The paternal X inactivation system of kangaroos has been investigated in this study by using tritiated uridine-induced chromosome aberrations to distinguish the active from the inactive X. Previous work in eutherian mammals has demonstrated that constitutive heterochromatic chromosome regions are less susceptible to breakage by tritiated uri dine than euchromatic regions. The results of a comparison between the paternal X chromosome of a wallaroo x red kangaroo hybrid female and the two X chromosomes of a red kangaroo female suggested that the facultative heterochromatin of the X is also less susceptible to breakage by this treatment. However there were significantly more breaks of the paternal X in fibroblasts than in lymphocytes of the hybrid female, which agrees with biochemical findings suggesting activation of the paternal X in fibroblasts. Our results strengthen the suggestion of other workers that the reduced number of aberrations in heterochromatin occurs because such breaks occur principally when the DNA and labelled RNA are in apposition during transcription. Some evidence was found of an apparent toxicity effect of the tritiated uridine solution on the cells.
Subject
Developmental Biology,Endocrinology,Genetics,General Materials Science,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,General Medicine,Biotechnology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献