Trapped and Escaping Orbits in an Axially Symmetric Galactic-Type Potential

Author:

Zotos Euaggelos E.

Abstract

AbstractIn the present article, we investigate the behavior of orbits in a time-independent axially symmetric galactic-type potential. This dynamical model can be considered to describe the motion in the central parts of a galaxy, for values of energies larger than the energy of escape. We use the classical surface-of-section method in order to visualize and interpret the structure of the phase space of the dynamical system. Moreover, the Lyapunov characteristic exponent is used in order to make an estimation of the degree of chaoticity of the orbits in our galactic model. Our numerical calculations suggest that in this galactic-type potential there are two kinds of orbits: (i) escaping orbits and (ii) trapped orbits, which do not escape at all. Furthermore, a large number of orbits of the dynamical system display chaotic motion. Among the chaotic orbits, there are orbits that escape quickly and also orbits that remain trapped for vast time intervals. When the value of a test particle's energy slightly exceeds the energy of escape, the number of trapped regular orbits increases as the value of the angular momentum increases. Therefore, the extent of the chaotic regions observed in the phase plane decreases as the energy value increases. Moreover, we calculate the average value of the escape period of chaotic orbits and try to correlate it with the value of the energy and also with the maximum value of the z component of the orbits. In addition, we find that the value of the Lyapunov characteristic exponent corresponding to each chaotic region for different values of energy increases exponentially as the energy increases. Some theoretical arguments are presented in order to support the numerically obtained outcomes.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of the escape in systems with four exit channels;Mathematical Methods in the Applied Sciences;2022-07-10

2. Effect of the mass ratio on the escape in the 4-body ring problem;The European Physical Journal Plus;2022-07

3. Orbital and equilibrium dynamics of a multiwell potential;Results in Physics;2022-07

4. Manifold dynamics and periodic orbits in a multiwell potential;Chaos, Solitons & Fractals;2022-07

5. Analysis of the distribution of times of escape in the N-body ring problem;Journal of Computational and Applied Mathematics;2022-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3