Soil sampling strategies for spatial prediction by correlation with auxiliary maps

Author:

Hengl Tomislav,Rossiter David G.,Stein Alfred

Abstract

The paper evaluates spreading of observations in feature and geographical spaces as a key to sampling optimisation for spatial prediction by correlation with auxiliary maps. Although auxiliary data are commonly used for mapping soil variables, problems associated with the design of sampling strategies are rarely examined. When generalised least-squares estimation is used, the overall prediction error depends upon spreading of points in both feature and geographical space. Allocation of points uniformly over the feature space range proportionally to the distribution of predictor (equal range stratification, or ER design) is suggested as a prudent sampling strategy when the regression model between the soil and auxiliary variables is unknown. An existing 100-observation sample from a 50 by 50 km soil survey in central Croatia was used to illustrate these concepts. It was re-sampled to 25-point datasets using different experimental designs: ER and 2 response surface designs. The designs were compared for their performance in predicting soil organic matter from elevation (univariate example) using the overall prediction error as an evaluation criterion. The ER design gave overall prediction error similar to the minmax design, suggesting that it is a good compromise between accurate model estimation and minimisation of spatial autocorrelation of residuals. In addition, the ER design was extended to the multivariate case. Four predictors (elevation, temperature, wetness index, and NDVI) were transformed to standardised principal components. The sampling points were then assigned to the components in proportion to the variance explained by a principal component analysis and following the ER design. Since stratification of the feature space results in a large number of possible points in each cluster, the spreading in geographical space can also be maximised by selecting the best of several realisations.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3