Synchrotron infrared microspectroscopy reveals the response of Sphagnum cell wall material to its aqueous chemical environment

Author:

Silvester EwenORCID,Klein Annaleise R.,Whitworth Kerry L.,Puskar Ljiljana,Tobin Mark J.

Abstract

Environmental contextSphagnum moss is a widespread species in peatlands globally and responsible for a large fraction of carbon storage in these systems. We used synchrotron infrared microspectroscopy to characterise the acid-base properties of Sphagnum moss and the conditions under which calcium uptake can occur (essential for plant tissue integrity). The work allows a chemical model for Sphagnum distribution in the landscape to be proposed. AbstractSphagnum is one the major moss types responsible for the deposition of organic soils in peatland systems. The cell walls of this moss have a high proportion of carboxylated polysaccharides (polygalacturonic acids), which act as ion exchangers and are likely to be important for the structural integrity of the cell walls. We used synchrotron light source infrared microspectroscopy to characterise the acid-base and calcium complexation properties of the cell walls of Sphagnum cristatum stems, using freshly sectioned tissue confined in a flowing liquid cell with both normal water and D2O media. The Fourier transform infrared spectra of acid and base forms are consistent with those expected for protonated and deprotonated aliphatic carboxylic acids (such as uronic acids). Spectral deconvolution shows that the dominant aliphatic carboxylic groups in this material behave as a monoprotic acid (pKa=4.97–6.04). The cell wall material shows a high affinity for calcium, with a binding constant (K) in the range 103.9–104.7 (1:1 complex). The chemical complexation model developed here allows for the prediction of the chemical environment (e.g. pH, ionic content) under which Ca2+ uptake can occur, and provides an improved understanding for the observed distribution of Sphagnum in the landscape.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3