Effect of soil, machine, and working state parameters on the required draft force of a subsoiler using a theoretical draft-calculating model

Author:

Ahmadi Iman

Abstract

One of the most important soil degradation agents in agriculture is compaction. To rehabilitate compacted fields, farmers usually use subsoilers to break compacted layers. Moreover, the required draft force of a subsoiler dictates the amount of energy needed to operate it. Therefore, measurement, calculation or prediction of the draft force of this machine is vital for designing an efficient subsoiler. In the present study, an analytical model was developed to calculate the subsoiler draft force. To verify the model developed herein, model outputs regarding the draft force of a subsoiler were compared with corresponding results from the American Society of Agricultural Engineers (ASAE) standard, as well as the results of literature studies. Moreover, the output of the model was compared with the measured draft force of subsoiling a silty clay loam soil. Furthermore, the results obtained regarding the quantitative effect of model inputs on the draft force of a subsoiler were checked from the viewpoint of compatibility with the expected trends or observed results in other studies. The data obtained from the developed model were compatible with those of the ASAE standard. Moreover, the draft force of a single-shank subsoiler was almost 10 kN, which is approximately 14% higher than the result obtained by the model (8.73 kN). Therefore, the model developed herein can be used to calculate the subsoiler draft force with reasonable accuracy. Of the machine parameters, subsoiler wingspan had an adverse effect on the specific draft of this machine. Moreover, for the range of working depths between 30 and 50cm, the minimum values of specific draft took place.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3