Light-Induced Electron-Transfer Reactions Involving the Tris(2,2'-Bipyridine)Ruthenium Dication and Related Complexes. 3. Improved Synthesis of 2,2'-Bipyridine-4,4'-Dicarboxylic Acid and Photoreduction of Water by Bis(2,2'-Bipyridine)(2,2'-Bipyridine-4,4'-Dicarboxylic Acid)Ruthenium(II)

Author:

Launikonis A,Lay PA,Mau AWH,Sargeson AM,Sasse WHF

Abstract

The oxidation of 4,4′-dimethyl-2,2′-bipyridine with potassium permanganate in water gives 2,2′-bipyridine-4,4′-dicarboxylic acid and 4′-methyl-2,2?-bipyridine-4-carboxylic acid. The latter acid is oxidized to the diacid by boiling nitric acid. Complexes of the type Ru ( bpy )2L2+ have been prepared where L is 2,2′-bipyridine-4,4′- dicarboxylic acid, diethyl 2,2′-bipyridine-4,4′-dicarboxylate, 4′- methyl-2,2′-bipyridine-4-carboxylic acid and ethyl 4′-methyl-2,2′- bipyridine-4-carboxylate. These complexes have been compared with [ Ru ( bpy )3]2+ as sensitizers for the photoreduction of water. Stern- Volmer analysis has been applied to the quenching of their luminescence by methylviologen (mv2+), [Co(sep)]3+ (sep is 1,3,6,8,10,13,16,19- octaazabicyclo [6.6.6] icosane ) and [Co( CLsar )]3+ ( CLsar is 1-chloro- 3,6,10,13,16,19-hexaazabicyclo[6.6.6] icosane ). Changes in the Stern-Volmer constants have been related to the free energy changes associated with the oxidative quenching and the overall charges of the ruthenium complexes. The rates of formation of hydrogen compared favourably in sacrificial cycles with the ruthenium complexes as sensitizers, mv2+, Co(sep)3+ as electron-transfer agents, platinum/poly(vinyl alcohol) as catalyst, and ethylenediaminetetraacetic acid as electron donor. The results obtained have been discussed in terms of variations in the efficiencies of cage escape in the oxidative quenching and competition between electron transfer and energy transfer.

Publisher

CSIRO Publishing

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3