Diatomic Rovibronic Transitions as Potential Probes for Proton-to-Electron Mass Ratio Across Cosmological Time

Author:

Syme Anna-Maree,Mousley Adam,Cunningham Maria,McKemmish Laura K.

Abstract

Astrophysical molecular spectroscopy is an important method of searching for new physics through probing the variation of the proton-to-electron mass ratio, μ, with existing constraints limiting variation to a fractional change of less than 10−17per year. To improve on this constraint and therefore provide better guidance to theories of new physics, new molecular probes will be useful. These probes must have spectral transitions that are observable astrophysically and have different sensitivities to variation in the proton-to-electron mass ratio. Here, we concisely detail how the set of potential molecular probes and promising sensitive transitions is constrained based on how the frequency and intensity of these transitions align with available telescopes. Our detailed investigation focuses on rovibronic transitions in astrophysical diatomic molecules, using the spectroscopic models of 11 diatomics to identify sensitive transitions and probe how they generally arise in real complex molecules with many electronic states and fine structure. While none of the 11 diatomics investigated have sensitive transitions likely to be astrophysically observable, we have found that at high temperatures (1000K) five of these diatomics have a significant number of low intensity sensitive transitions arising from an accidental near-degeneracy between vibrational levels in the ground and excited electronic states. This insight enables screening of all astrophysical diatomics as potential probes of proton-to-electron mass variation, with CN, CP, SiN and SiC being the most promising candidates for further investigation for sensitivity in rovibronic transitions.

Publisher

CSIRO Publishing

Subject

General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A coupled-channel deperturbation treatment of the X2Σ+A2ΠB2Σ+ complex of the CN radical towards spectroscopic accuracy;Journal of Quantitative Spectroscopy and Radiative Transfer;2022-12

2. A computational study of the non-adiabatic coupling among low-lying doublet states of the CN radical;Journal of Quantitative Spectroscopy and Radiative Transfer;2021-12

3. Full spectroscopic model and trihybrid experimental-perturbative-variational line list for CN;Monthly Notices of the Royal Astronomical Society;2021-05-29

4. Molecular diatomic spectroscopy data;WIREs Computational Molecular Science;2021-02-25

5. The 2020 release of the ExoMol database: Molecular line lists for exoplanet and other hot atmospheres;Journal of Quantitative Spectroscopy and Radiative Transfer;2020-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3