Salicylic acid mitigates the effects of mild drought stress on radish (

Author:

Henschel Juliane MacielORCID,Dantas Estephanni Fernanda Oliveira,Soares Vanessa de Azevedo,Santos Sabrina Kelly dos,Santos Letícia Waléria Oliveira dos,Dias Thiago Jardelino,Batista Diego SilvaORCID

Abstract

Water deficit is the most critical factor limiting plant growth and production and salicylic acid (SA) has potential for stress mitigation in plants; therefore, we evaluated the effect of SA on radish (Raphanus sativus L.) growth and ecophysiology under water deficit. Plants were sprayed with SA (100 μM) or water (control), and irrigated at 80% (W80), 60% (W60), 40% (W40), and 20% (W20) of field capacity. The SA treatments and drought stress started 7 days after sowing and lasted until the end of the cycle (30 days after sowing). The morphophysiological analyses showed that radish plants had impaired growth at the lower water supply levels, but the treatment with SA reversed these growth restraints under moderate stress, leading to increases in shoot mass at W40 and storage root mass at W60 and W40. SA treatment also reversed the reduction of storage root volume at W60. The tendency of water deficit to increase FO and reduce FV/FM suggests possible damage to the photosystem II of drought-stressed plants. The parameters of gas exchange and photosynthetic pigments showed maintained photosynthetic efficiency, but total photosynthesis decreased due the lower shoot dry mass. Overall, exogenously applied SA reversed the growth restraints at W60 and W40, which revealed that SA was effective in mitigating the effects of moderate water deficit on biomass accumulation and partitioning in radish plants.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Reference49 articles.

1. Image processing with ImageJ.;Biophotonics International,2004

2. Agritempo – Sistema de Monitoramento Agrometeorológico (2021). Agritempo. Available at

3. Understanding drought tolerance in plants.;Physiologia Plantarum,2021

4. Revisiting the role of ROS and RNS in plants under changing environment.;Environmental and Experimental Botany,2019

5. Determinação do coeficiente de cultivo para a cultura do rabanete através de lisimetria de drenagem.;Irriga,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3