Effects of forage species and feeding systems on rumen fermentation, microbiota and conjugated linoleic acid content in dairy goats

Author:

Thongruang Saranpong,Paengkoum Pramote,Suksombat Wisitiporn,Bureenok Smerjai

Abstract

The objective of this experiment was to investigate the effects of forage species and feeding systems on ruminal fermentation, microbiota (Butyrivibrio fibrisolvens, Fibrobacter succinogenes and total bacteria) and conjugated linoleic acid (CLA) concentration of milk in dairy goats. Twenty female crossbred Saanen lactating goats (~35 ± 3.0 kg bodyweight) in early to mid-lactation stage were assigned to a 45-day completely randomised-design feeding experiment, with the following four forage (roughage) treatments: cut-and-carry grass (CG), grazing of grass (GG), cut-and-carry leucaena (CL) and grazing of leucaena (GL; n = 5). All animals were given concentrate equivalent to 1.5% of their bodyweight. The grass used in the study was napier Pak Chong 1 grass (Pennisetum purpureum × Pennisetum americanum hybrid). The results showed that irrespective of the type of forage, grazing goats (GG and GL) had a higher (P < 0.05) forage intake and, thus, total dry-matter and crude-protein intakes than did those fed indoors (CG and CL). However, the intake of C18:2n6 and particularly of C18:3n3 was generally higher for grass-fed goats than for leucaena-fed goats. Treatments did not exert significant differences on rumen fermentation characteristics. However, the populations of B. fibrisolvens, F. succinogenes and total bacteria were significantly (P < 0.05) higher in grazing goats (GG and GL) than in their counterparts fed with the cut-and-carry system (CG and CL). Goats in the grazing system also had a higher (P < 0.05) milk yield, and milk fat, c9, t11 CLA and omega-3 fatty acid concentrations than did those in the cut-and-carry system and only grazing goats produced detectable levels of t10, c12 CLA in milk. Putting the above together, it can be concluded that allowing dairy goats to outdoor grazing stimulates a higher forage intake, including that of C18:2n6 and C18:3n3, as well as enhancing population of B. fibrisolvens (involved in the synthesis of milk CLA), resulting in a higher milk yield, and enhances c9, t11 and t10, c12 CLA in goat milk.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3