Usability of rice straw biochar for remediation and amelioration of vanadium contaminated soils in areas under acid rain leaching

Author:

Yu Ya-qi,Li Jin-xin,Yang Jin-yanORCID

Abstract

Environmental context Biochar produced by agricultural wastes can be used for vanadium treatment, soil fertility improvement, and agricultural waste disposal, whereas acid rain leaching may decrease its remediating efficiency of the metal contaminated soil. Therefore, vanadium behaviour in soil and soil quality change after biochar application were analysed under simulated acid rain leaching. Findings provide insights into acid rain leaching effects on soil quality, vanadium release from soil, and biochar remediating efficiency. Rationale Considering the effects of acid rain on the leaching of metals and nutrients in soil, rice straw biochar, with the potential to remediate and improve the quality of vanadium contaminated soil, was further evaluated for its remediating and ameliorating performance of soil under acid rain. Methodology The adsorption capacity and isotherm of vanadium by rice straw biochar were investigated. Simulated acid rain leaching experiments were performed to study the influence of acid rain on vanadium behaviour in soil and nutrients and on the structure of the soil. Results Isotherm adsorption studies indicated a preference for a monolayer process without transmigrations of the adsorbed vanadium onto the biochar surface. After leaching with simulated acid rain, compared with the untreated soil, the available vanadium (129.63 ± 3.75–76.10 ± 3.24 mg kg−1) in the soil decreased notably by adding 2–3 wt% biochar (P < 0.05). The organic matter content (1.71 ± 0.25–4.31 ± 0.42%) and available P content (15.13 ± 0.56–29.88 ± 0.28 mg kg−1) in the soil increased with the biochar application ratio increasing from 0 to 3 wt%. Whereas the available N concentration in the soil amended with 3 wt% biochar (27.70 ± 4.35 mg kg−1) was significantly lower than that without biochar addition (41.28 ± 1.62 mg kg−1) (P < 0.05). In addition, an increased proportion of macro-aggregates and decreased proportion of micro-aggregates of the soil after application of 2–3 wt% biochar was also observed. Discussion The application of rice straw biochar at the addition level of 3 wt% has potential for remediating and ameliorating vanadium contaminated soil under acid rain. Appropriate modification of the biochar should be undertaken in future to achieve an effective remediation and amelioration of soil under a long-term influence of acid rain. It is also of interest to study the capacity of the biochar to amend soils with high N load.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3